Document Type
Article
Publication Date
3-18-2013
Publication Title
American Journal of Physics
Abstract
The de Broglie-Bohm “pilot-wave” theory replaces the paradoxical wave-particle duality of ordinary quantum theory with a more mundane and literal kind of duality: each individual photon or electron comprises a quantum wave (evolving in accordance with the usual quantum mechanical wave equation) and a particle that, under the influence of the wave, traces out a definite trajectory. The definite particle trajectory allows the theory to account for the results of experiments without the usual recourse to additional dynamical axioms about measurements. Instead, one need simply assume that particle detectors click when particles arrive at them. This alternative understanding of quantum phenomena is illustrated here for two elementary textbook examples of one-dimensional scattering and tunneling. We introduce a novel approach to reconcile standard textbook calculations (made using unphysical plane-wave states) with the need to treat such phenomena in terms of normalizable wave packets. This approach allows for a simple but illuminating analysis of the pilot- wave theory’s particle trajectories and an explicit demonstration of the equivalence of the pilot-wave theory predictions with those of ordinary quantum theory.
Volume
81
Issue
4
First Page
258
Last Page
266
DOI
http://dx.doi.org/10.1119/1.4792375
ISSN
1943-2909
Rights
© 2013 American Association of Physics Teachers.
Recommended Citation
Norsen, Travis, "The Pilot-Wave Perspective on Quantum Scattering and Tunneling" (2013). Physics: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/phy_facpubs/18
Comments
Archived as published.