Document Type
Article
Publication Date
11-2014
Publication Title
Annals of Physics
Abstract
It was recently pointed out (and demonstrated experimentally) by Lundeen et al. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be "directly measured" using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a (perhaps entangled) multi-particle system, the result is precisely the so-called "conditional wave function" of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics (uniquely) makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-system's density matrix should yield, under appropriate circumstances, the Bohmian "conditional density matrix" as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behavior -- and also thereby reveal the non-local dependence of sub-system state functions on distant interventions -- are suggested and discussed.
Keywords
Quantum mechanics, Weak measurement, Bohmian mechanics, Quantum non-locality
Volume
350
First Page
166
Last Page
178
DOI
10.1016/j.aop.2014.07.014
ISSN
0003-4916
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Rights
Licensed CC-BY-NC-ND at the request of the publisher.
Recommended Citation
Norsen, Travis, "Weak Measurement and Bohmian Conditional Wave Functions" (2014). Physics: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/phy_facpubs/21
Comments
Peer reviewed accepted manuscript.