Document Type

Article

Publication Date

6-2017

Publication Title

Physical Review Letters

Abstract

We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ−(BEDT−TTF)2Cu(NCS)2 as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements—including the observation of a phase transition into the FFLO phase at Hp—is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

Keywords

Specific heat, Superconductivity, Phase transitions, Specific phase transitions, Superconducting phase transition

Volume

118

Issue

26–30

DOI

doi.org/10.1103/PhysRevLett.118.267001

Rights

© 2017 American Physical Society

Comments

Peer reviewed accepted manuscript.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.