Document Type

Article

Publication Date

10-19-1999

Publication Title

Physical Review D

Abstract

We study inflationary models in which the effective potential of the inflaton field does not have a minimum, but rather gradually decreases at large φ. In such models the inflaton field does not oscillate after inflation, and its effective mass becomes vanishingly small, so the standard theory of reheating based on the decay of the oscillating inflaton field does not apply. For a long time the only mechanism of reheating in such non-oscillatory (NO) models was based on gravitational particle production in an expanding universe. This mechanism is very inefficient. We will show that it may lead to cosmological problems associated with large isocurvature fluctuations and overproduction of dangerous relics such as gravitinos and moduli fields. We also note that the setting of initial conditions for the stage of reheating in these models should be reconsidered. All of these problems can be resolved in the context of the recently proposed scenario of instant preheating if there exists an interaction g2φ2χ2 of the inflaton field φ with another scalar field χ. We show that the mechanism of instant preheating in NO models is much more efficient than the usual mechanism of gravitational particle production even if the coupling constant g2 is extremely small, 10−14≪g2≪1

Volume

60

Issue

103505

DOI

doi-org.libproxy.smith.edu/10.1103/PhysRevD.60.103505

Rights

©1999 American Physical Society

Comments

Archived as published.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.