Document Type
Article
Publication Date
12-25-2020
Publication Title
Physical Review B
Abstract
Quantum fluctuations in the effective spin-1/2 layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba3CoSb2O9 lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane, including a celebrated collinear ‘up-up-down’ spin ordering with magnetization equal to 1/3 of the saturation magnetization over an extended field range. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. Additional magnetic-field-induced phase transitions are theoretically expected and in some cases have been experimentally observed, but details regarding their number, location, and physical character appear inconsistent with the predictions of existing models. Conversely, an absence of experimental measurements as a function of magnetic-field orientation has left other key predictions of these models untested. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H||ab, we have discovered an additional, previously unreported magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point in the high field phase diagram, which — coupled with the apparent second-order nature of the phase transitions — eliminates several theoretically proposed spin structures for the high field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel (H||a) but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition is not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide new guidance into the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal 2D spin-1/2 triangular lattice quantum Heisenberg antiferromagnet.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Rights
Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.
Recommended Citation
Fortune, Nathanael Alexander; Huang, Q.; Hong, T.; Ma, J.; Choi, E. S.; Hannahs, S. T.; Zhao, Z. Y.; Sun, X. F.; Takano, Y.; and Zhou, H. D., "Evolution of Magnetic-Field-Induced Ordering in the Layered Structure Quantum Heisenberg Triangular-Lattice Antiferromagnet Ba3CoSb2O9" (2020). Physics: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/phy_facpubs/61
Comments
Author’s submitted manuscript.
Updated on 4/10/2021 from the December 25, 2020 version to the May 10, 2021 version.
Forthcoming publication in Physical Review B