Author ORCID Identifier

Preston P. Thakral: 0000-0001-6603-6186

Document Type

Article

Publication Date

6-1-2022

Publication Title

Cortex

Abstract

Few studies have examined how multisensory emotional experiences are processed and encoded into memory. Here, we aimed to determine whether, at encoding, activity within functionally-defined visual- and auditory-processing brain regions discriminated the emotional category (i.e., positive, negative, or neutral) of the multisensory (audio-visual) events. Participants incidentally encoded positive, negative, and neutral multisensory stimuli during event-related functional magnetic resonance imaging (fMRI). Following a 3-h post-encoding delay, their memory for studied stimuli was tested, allowing us to identify emotion-category-specific subsequent-memory effects focusing on medial temporal lobe regions (i.e., amygdala, hippocampus) and visual- and auditory-processing regions. We used a combination of univariate and multivoxel pattern fMRI analyses (MVPA) to examine emotion-category-specificity in mean activity levels and neural patterning, respectively. Univariate analyses revealed many more visual regions that showed negative-category-specificity relative to positive-category-specificity, and auditory regions only showed negative-category-specificity. These results suggest that negative emotion is more closely tied to information contained within sensory regions, a conclusion that was supported by the MVPA analyses. Functional connectivity analyses further revealed that the visual amplification of category-selective processing is driven, in part, by mean signal from the amygdala. Interestingly, while stronger representations in visuo-auditory regions were related to subsequent-memory for neutral multisensory stimuli, they were related to subsequent-forgetting of positive and negative stimuli. Neural patterning in the hippocampus and amygdala were related to memory for negative multisensory stimuli. These results provide new evidence that negative emotional stimuli are processed with increased engagement of visuosensory regions, but that this sensory engagement—that generalizes across the entire emotion category—is not the type of sensory encoding that is most beneficial for later retrieval.

Keywords

Amygdala, Emotion, Hippocampus, MVPA, Subsequent memory

Volume

151

First Page

240

Last Page

258

DOI

10.1016/j.cortex.2022.02.014

ISSN

00109452

Comments

Peer reviewed accepted manuscript.

Included in

Psychology Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.