Document Type

Article

Publication Date

10-2-2015

Publication Title

American Statistician

Publication Title

American Statistician

Volume

69

Issue

4

Abstract

A growing number of students are completing undergraduate degrees in statistics and entering the workforce as data analysts. In these positions, they are expected to understand how to use databases and other data warehouses, scrape data from Internet sources, program solutions to complex problems in multiple languages, and think algorithmically as well as statistically. These data science topics have not traditionally been a major component of undergraduate programs in statistics. Consequently, a curricular shift is needed to address additional learning outcomes. The goal of this article is to motivate the importance of data science proficiency and to provide examples and resources for instructors to implement data science in their own statistics curricula. We provide case studies from seven institutions. These varied approaches to teaching data science demonstrate curricular innovations to address new needs. Also included here are examples of assignments designed for courses that foster engagement of undergraduates with data and data science. [Received November 2014. Revised July 2015.]

Comments

Peer reviewed accepted manuscript.

First Page

343

Last Page

353

Digital Object Identifier (DOI)

10.1080/00031305.2015.1077729

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.