Document Type

Article

Publication Date

2020

Publication Title

Proc. of the 21st Int. Society for Music Information Retrieval Conf., Montréal, Canada, 2020

Abstract

Accurate and flexible representations of music data are paramount to addressing MIR tasks, yet many of the existing approaches are difficult to interpret or rigid in nature. This work introduces two new song representations for structure-based retrieval methods: Surface Pattern Preservation (SuPP), a continuous song representation, and Matrix Pattern Preservation (MaPP), SuPP’s discrete counterpart. These representations come equipped with several user-defined parameters so that they are adaptable for a range of MIR tasks. Experimental results show MaPP as successful in addressing the cover song task on a set of Mazurka scores, with a mean precision of 0.965 and recall of 0.776. SuPP and MaPP also show promise in other MIR applications, such as novel-segment detection and genre classification, the latter of which demonstrates their suitability as inputs for machine learning problems.

Comments

Archived as published.

Rights

© Claire Savard, Erin H. Bugbee, Melissa R. McGuirl, Katherine M. Kinnaird. L

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.