Document Type

Article

Publication Date

4-23-2022

Publication Title

Technology Innovations in Statistics Education

Volume

14

Issue

1

Abstract

Computing makes up a large and growing component of data science and statistics courses. Many of those courses, especially when taught by faculty who are statisticians by training, teach R as the programming language. A number of instructors have opted to build much of their teaching around use of the tidyverse. The tidyverse, in the words of its developers, “is a collection of R packages that share a high-level design philosophy and low-level grammar and data structures, so that learning one package makes it easier to learn the next” (Wickham et al. 2019). These shared principles have led to the widespread adoption of the tidyverse ecosystem. A large part of this usage is because the tidyverse tools have been intentionally designed to ease the learning process and make it easier for users to learn new functions as they engage with additional pieces of the larger ecosystem. Moreover, the functionality offered by the packages within the tidyverse spans the entire data science cycle, which includes data import, visualisation, wrangling, modeling, and communication. We believe the tidyverse provides an effective and efficient pathway for undergraduate students at all levels and majors to gain computational skills and thinking needed throughout the data science cycle. In this paper, we introduce the tidyverse from an educator’s perspective. We provide a brief introduction to the tidyverse, demonstrate how foundational statistics and data science tasks are accomplished with the tidyverse, and discuss the strengths of the tidyverse, particularly in the context of teaching and learning.

Comments

Peer reviewed accepted manuscript.

Digital Object Identifier (DOI)

dx.doi.org/10.5070/T514154352

Rights

© 2022 by the author(s) Licensed to Smith College and distributed CC-BY under the Smith College Faculty Open Access Policy.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.