To access this work you must either be on the Smith College campus OR have valid Smith login credentials.

On Campus users: To access this work if you are on campus please Select the Download button.

Off Campus users: To access this work from off campus, please select the Off-Campus button and enter your Smith username and password when prompted.

Non-Smith users: You may request this item through Interlibrary Loan at your own library.

Publication Date

2017-5

First Advisor

David Bickar

Document Type

Honors Project

Degree Name

Bachelor of Arts

Department

Chemistry

Keywords

Oxazoles, Peptide, Antibiotic, Ion channel design, Peptides-Synthesis, Antibiotics

Abstract

Antibiotic resistance is a rapidly growing problem in the past seventy years. Over the past year over 2 million people were diagnosed with antibacterial resistant infections, at least 23,000 of whom died from their infections (Silva, 2016). However, over recent years a promising new class of antibiotics has emerged, known as cyclic antimicrobial peptides (AMP). These structures indirectly attack the bacterial cells by forming pores in the cell walls (Straus, 2006).

Recent studies have shown that small heterocyclic groups in macrocyclic structures can improve their resistance to proteolytic degradation. For the purposes of this study oxazole rings were incorporated into the design because in addition to inhibiting proteolysis, oxazole groups are themselves chemically stable and therapeutically active. (Kelleher, 1998)

In this study, a novel peptidic structure was designed and synthesized. Through several syntheses a successful synthetic strategy was developed to obtain this compound.

The designed molecule was obtained in a 45% yield. For each step of the synthesis the identity of the product was characterized using 1 H and 13 C NMR, IR, and Mass Spectrometry. Although the final product proved to be extremely insoluble, it was determined to be an effective ion channel upon addition to a synthetic bilayer system.

Language

English

Comments

113 pages : illustrations (some color). Includes bibliographical references (pages 106-113)

Share

COinS