To access this work you must either be on the Smith College campus OR have valid Smith login credentials.
On Campus users: To access this work if you are on campus please Select the Download button.
Off Campus users: To access this work from off campus, please select the Off-Campus button and enter your Smith username and password when prompted.
Non-Smith users: You may request this item through Interlibrary Loan at your own library.
Publication Date
2018-05-14
First Advisor
William Williams
Document Type
Honors Project
Degree Name
Bachelor of Arts
Department
Physics
Keywords
PID controller, Feedback, Electronics, Neural networks, Deep learning, Machine learning, Neural networks (Neurobiology)
Abstract
This thesis project is the first in a total of two thesis projects. The main focus of this project was the design and creation of a noise eater circuit which utilizes a PI (Proportional, Integral) controller for its control element. In this paper, the design and testing of the circuit are discussed. We were able to successfully build our own functioning noise eater, which relied on a system of several op amps for the controller portion. The second part of this project, which will trail into the next theses, is training a deep neural network controller as a replacement for the PI controller. This portion of the project is inspired by a proposed deep learning circuit by Cheon et al. [8]. By the end of this project, we had completed several testing procedures of the deep learning controller, but have faced problems with ’memory’ that have yet to be resolved. The next thesis project will focus on improving the training procedure of the deep learning controller, with the goal of training it to the point where it can mimic the same process of a proportional, integral, derivative (PID) controller.
Rights
2018 Isabelle Elise Bunge. Access limited to the Smith College community and other researchers while on campus. Smith College community members also may access from off-campus using a Smith College log-in. Other off-campus researchers may request a copy through Interlibrary Loan for personal use.
Language
English
Recommended Citation
Bunge, Isabelle Elise, "The construction of a noise eater utilizing a PID controller and subsequent modifications using neural networks" (2018). Honors Project, Smith College, Northampton, MA.
https://scholarworks.smith.edu/theses/1998
Smith Only:
Off Campus Download
Comments
xvii, 60 pages : illustrations (some color) Includes bibliographical references (pages 57-60)