Document Type


Publication Date


Publication Title

Chemistry of Materials


We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the "reactive" layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4′-dimethylazlactone) (PVDMA). Postfabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization/dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multistep synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ∼450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents.


in situ synthesis, layer-by-layer, Maskless Array Synthesis, oligonucleotide arrays, polymer multilayers, reactive assembly, thin films





First Page


Last Page







Peer reviewed accepted manuscript.

Included in

Chemistry Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.