Document Type

Article

Publication Date

2-4-2011

Abstract

Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that "live on a cone," in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone Lambda, with the apex a of Lambda enclosed inside (the image of) C; we also prove that each point of C is "visible to" a. In particular, we obtain that these curves have non-self-intersecting developments in the plane. Moreover, the curves we identify that live on cones to both sides support a new type of "source unfolding" of the entire surface of P to one non-overlapping piece, as reported in a companion paper.

Comments

Author’s submitted manuscript.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.