Document Type

Article

Publication Date

1-1-2011

Publication Title

Ars Mathematica Contemporanea

Abstract

A hypergraph G with n vertices and m hyperedges with d endpoints each is (k; ℓ)- sparse if for all sub-hypergraphs G′ on n′ vertices and m′ edges, m′ < kn′ - ℓ. For integers k and ℓ satisfying 0 ≤ ℓ ≤ dk - 1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k; ℓ)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G. Copyright © 2011 DMFA Slovenije.

Keywords

Combinatorial rigidity, Matroids, Sparse graphs and hypergraphs

Volume

4

Issue

1

First Page

141

Last Page

151

DOI

10.26493/1855-3974.197.461

ISSN

18553966

Rights

© 2011 DMFA Slovenije

Comments

Archived as published.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.