Document Type
Article
Publication Date
1-1-2011
Publication Title
Ars Mathematica Contemporanea
Abstract
A hypergraph G with n vertices and m hyperedges with d endpoints each is (k; ℓ)- sparse if for all sub-hypergraphs G′ on n′ vertices and m′ edges, m′ < kn′ - ℓ. For integers k and ℓ satisfying 0 ≤ ℓ ≤ dk - 1, this is known to be a linearly representable matroidal family. Motivated by problems in rigidity theory, we give a new linear representation theorem for the (k; ℓ)-sparse hypergraphs that is natural; i.e., the representing matrix captures the vertex-edge incidence structure of the underlying hypergraph G. Copyright © 2011 DMFA Slovenije.
Keywords
Combinatorial rigidity, Matroids, Sparse graphs and hypergraphs
Volume
4
Issue
1
First Page
141
Last Page
151
DOI
10.26493/1855-3974.197.461
ISSN
18553966
Rights
© 2011 DMFA Slovenije
Recommended Citation
Streinu, Ileana and Theran, Louis, "Natural Realizations of Sparsity Matroids" (2011). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/308
Comments
Archived as published.