Document Type

Article

Publication Date

10-1-2008

Publication Title

American Journal of Mathematics

Abstract

This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over ℂ and over ℂ[t1, t2, . . . , tn]. We show these group actions are the same as an action of simple transpositions studied geometrically by M. Brion, and give topological meaning to the divided difference operators of Berstein-Gelfand-Gelfand, Demazure, Kostant-Kumar, and others. We analyze these representations using the combinatorial approach to equivariant cohomology introduced by Goresky-Kottwitz-MacPherson. We find that each permutation representation on equivariant cohomology produces a representation on ordinary cohomology that is trivial, though the equivariant representation is not.

Volume

130

Issue

5

First Page

1171

Last Page

1194

DOI

10.1353/ajm.0.0018

ISSN

00029327

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.