Document Type

Article

Publication Date

9-1-2008

Publication Title

Mathematische Annalen

Abstract

We consider the mixed problem, {Δ u = 0 in Ω ∂u = f N on N u = fD on D in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. We suppose the Dirichlet data, f D , has one derivative in L p (D) of the boundary and the Neumann data, f N , is in L p (N). We find a p 0 > 1 so that for p in an interval (1, p 0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L p .

Volume

342

Issue

1

First Page

91

Last Page

124

DOI

10.1007/s00208-008-0223-6

ISSN

00255831

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.