Document Type

Article

Publication Date

9-1-2007

Publication Title

Selecta Mathematica, New Series

Abstract

Regular nilpotent Hessenberg varieties form a family of subvarieties of the flag variety arising in the study of quantum cohomology, geometric representation theory, and numerical analysis. In this paper we construct a paving by affines of regular nilpotent Hessenberg varieties for all classical types, generalizing results of De Concini-Lusztig-Procesi and Kostant. This paving is in fact the intersection of a particular Bruhat decomposition with the Hessenberg variety. The nonempty cells of the paving and their dimensions are identified by combinatorial conditions on roots. We use the paving to prove these Hessenberg varieties have no odd-dimensional homology.

Keywords

Bruhat decomposition, Hessenberg varieties, Paving

Volume

13

Issue

2

First Page

353

Last Page

367

DOI

10.1007/s00029-007-0038-4

ISSN

10221824

Comments

Peer reviewed accepted manuscript.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.