Document Type

Article

Publication Date

2-2004

Publication Title

American Journal of Physics

Abstract

Beads on a vibrating wire are used to simulate the discrete structure of a solid-state material. The novel idea of the experiment is to use very small oscillation amplitudes of the wire to avoid nonlinearities in the interaction. We achieve a good signal-to-noise ratio using a lock-in technique. We find quantitative agreement between theory and experiment for not only a mono- and a diatomic chain, but also for the bare wire. The latter agreement is the crucial aspect that distinguishes our experiment from previous ones. This agreement assures that the fundamental assumption of the theory ~Hooke’s law! is satisfied. We show that the properties of phonon dispersion curves are not special, and that the same band structures occur when the wavelength of any wave becomes comparable to the length scale of a discrete periodicity.

Volume

72

Issue

2

DOI

10.1119/1.1625923

Rights

© 2004 American Association of Physics Teachers

Comments

Archived as published.

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.