Document Type
Article
Publication Date
6-1-2018
Publication Title
Journal of Colloid and Interface Science
Abstract
Hypothesis
The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (nm) features. However, determining the role of topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects.
Experiments
Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH- terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 hours using fluorescence and confocal microscopy.
Findings
The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied.
Keywords
Biofilm nucleation, nanoscale, silicon, surface chemistry, surface topography, Pseudomonas aeruginosa
Volume
519
First Page
203
Last Page
213
DOI
doi.org/10.1016/j.jcis.2018.02.068
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Zhang, Zhang; Huang, Jingling; Say, Carmen; Dorit, Robert L.; and Queeney, Kate, "Deconvoluting the Effects of Surface Chemistry and Nanoscale Topography: Pseudomonas aeruginosa Biofilm Nucleation on Si-based Substrates" (2018). Chemistry: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/chm_facpubs/15
Comments
Archived as published.