Document Type

Article

Publication Date

6-27-2018

Publication Title

Journal of the American Chemical Society

Abstract

Mechanistic information on a reliable, palladium-catalyzed aminocarbonylation of aryl chlorides with ammonia is reported. The reaction occurs with ethylene complex 1 as catalyst, and mechanistic information was gained by isolation of catalytic intermediates and kinetic measurements, including the first mechanistic data on the oxidative addition of aryl chloride to a palladium(0) complex in the presence of CO. Arylpalladium and phenacylpalladium halide intermediates were synthesized, and kinetic measurements of the formation and reactions of these intermediates were undertaken to determine the mechanism of the oxidative addition of aryl bromides and chlorides to a Pd(0) dicarbonyl compound in the presence of CO and the mechanism of the reaction of ammonia with a Pd(II) phenacyl complex to form benzamide. The oxidative addition of aryl chlorides and aryl bromides was determined to occur with rate-limiting reaction of the haloarene with a three-coordinate Pd(0) species bearing a bidentate phosphine and one CO ligand. A primary 13 C kinetic isotope effect suggested that this step involves cleavage of the carbon-halogen bond. Our data show that the formation of benzamide from the reaction of phenacylpalladium halide complexes with ammonia occurs by a pathway involving reversible displacement of chloride from a phenacylpalladium chloride complex by ammonia, deprotonation of the bound ammonia to form a phenacylpalladium amido complex, and reductive elimination to form the C-N bond. Consistent with this mechanism, the reaction of an aryl palladium amido complex with CO formed the corresponding primary benzamide. A catalyst deactivation pathway involving the formation of a Pd(I) dimer also was elucidated.

Volume

140

Issue

25

First Page

7979

Last Page

7993

DOI

10.1021/jacs.8b04073

ISSN

00027863

Comments

Peer reviewed accepted manuscript.

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.